On Square-Primitive Sets with Small Gaps

Xiaoyu He

September 11, 2015

1 Introduction

Call a sequence S of positive integers square-primitive if there do not exist $a, b \in S$ for which $\frac{b}{a}$ is a perfect square greater than 1. We say a sequence has gaps bounded by $g(N)$ if for every $N \geq 1$, the subsequence $S \cap [1, N]$ has no gaps $> g(N)$. We will prove the following.

Theorem 1. For any $\varepsilon > 0$, there exists a square-primitive sequence S with gaps bounded by $C(\log N)^2(\log \log N)^\varepsilon$ for some absolute constant C depending only on ε.

In fact, we can think of constructing an arbitrary square-primitive sequence S as follows. For each squarefree integer m, consider the set of all its square multiples $T_m = \{ma^2 : a \in \mathbb{N}\}$. The sets T_m are all disjoint as we vary m over all squarefree numbers, and cover all of \mathbb{N}. Now each T_m is naturally a poset under divisibility, and to pick S square-primitive is equivalent to independently picking an antichain from each T_m. Obviously since every antichain extends to a maximal one this amounts to giving a probability distribution over all of the maximal antichains in T_m.

2 The Construction

There are certain distinguished antichains in each T_m. Write $A_{m,k}$ to be the antichain of all $n \in T_m$ such that n/m is the square of a product of k not necessarily distinct primes. Thus for example $A_{1,0} = \{1\}$ and $A_{1,1}$ is the set of squares of primes. From each T_m we independently pick one $A_{m,k}$ with probability $C/f(k+1)$ where f is any function for which $\sum_n 1/f(n)$ converges and

$$\sum_{n \geq 1} \frac{1}{f(n)} = \frac{1}{C},$$

and put $A_{m,k}$ in S. Now, the probability that a given n is put in S is just $C/f(\Omega_2(n))$, where $\Omega_2(n)$ is the number of primes p such that $p^2|n$, counted by multiplicity, i.e.

$$\Omega_2(n) = \sum_{p|n} \left\lfloor \frac{\nu_p(n)}{2} \right\rfloor.$$
3 The Proof

It remains to show that S has no small gaps with high probability. Let $h = h(x)$ be a slow-growing gap function, i.e. $h \ll x^{1/2-\varepsilon}$ and $h \rightarrow \infty$. It is easy to check that the $[x, x + h)$ intersects every T_m at most once, for all x sufficiently large, since the difference between ma^2 and mb^2 is at least $m(a + b) \geq \sqrt{\min(ma^2, mb^2)}$. Thus all of the events $n \in S$ are independent when $n \in [x, x + h)$ for x sufficiently large.

We can now say that the probability S misses the entire interval is

$$P[S \cap [x, x + h) = \emptyset] = \prod_{n \in [x, x + h)} \left(1 - \frac{C}{f(\Omega_2(n) + 1)}\right)$$

exactly. We wish to say this probability decreases rapidly as $x \rightarrow \infty$. Now there exists a positive proportion Ah of $n \in [x, x + h)$ such that no $p^2|n$ for $p \leq h$, whenever h is sufficiently large. For the n in this set, we have

$$\Omega_2(n) \leq \frac{\log n}{2 \log h}.$$

Thus, if we also apply $1 - t \leq e^{-t}$ to the previous identity, we get

$$P[S \cap [x, x + h) = \emptyset] \leq \exp\left(-\frac{ACH}{f(\log x/2 \log h + 1)}\right).$$

Thus if we take h to satisfy

$$h \gg \log x \cdot f(\log x/2 \log h + 1)$$

we are immediately done; the probability that S has gaps $> h$ is negligible. In fact if we take

$$h = C' (\log x)^2 (\log \log x)^\varepsilon$$

the result follows from the choice

$$f(n) = n (\log n)^{1+\varepsilon}.$$